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We present a high order kinetic flux-vector splitting (KFVS) scheme for the numerical solu-
tion of a conservative interface-capturing five-equation model of compressible two-fluid
flows. This model was initially introduced by Wackers and Koren (2004) [21]. The flow
equations are the bulk equations, combined with mass and energy equations for one of
the two fluids. The latter equation contains a source term in order to account for the energy
exchange. We numerically investigate both one- and two-dimensional flow models. The
proposed numerical scheme is based on the direct splitting of macroscopic flux functions
of the system of equations. In two space dimensions the scheme is derived in a usual
dimensionally split manner. The second order accuracy of the scheme is achieved by using
MUSCL-type initial reconstruction and Runge–Kutta time stepping method. For validation,
the results of our scheme are compared with those from the high resolution central scheme
of Nessyahu and Tadmor [14]. The accuracy, efficiency and simplicity of the KFVS scheme
demonstrate its potential for modeling two-phase flows.

� 2009 Published by Elsevier Inc.
1. Introduction

Two-fluid flow problems occur in various scientific and technical disciplines ranging from environmental research to
modeling of operations in nuclear, chemical or processing engineering installations. The modeling and simulation of these
flows is one of the most challenging problems in computational fluid dynamics. In such problems the flow regime of interest
contains two or more non-mixed fluids separated by sharp interfaces. A challenging part in the numerical simulation of these
models is the coupling of interface with the fluid flow model. Because, a coupling mismatch may introduce large errors in the
numerical simulations.

In this manuscript, a conservative interface-capturing compressible two-fluid model of Wackers and Koren [21,22] is con-
sidered. In this model, instead of an explicit interface tracking procedure, the fluid is treated as a mixture of pure fluids in the
vicinity of interface and reduces to a single fluid away from the interface. At the interface, there is a smooth but numerically
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smeared transition from one fluid to another. Hence, no additional equations are needed for capturing the behavior of flow in
the interfacial cells. The interface motion is implicitly realized from the solution of the flow model. In one space dimension
the model contains five equations. The equations include three bulk-fluid equations and mass and energy equations for one
of the two pure fluids. A source term in the energy equation is responsible for the exchange of energy between the fluids. The
energy exchange is only due to work; heat exchange between the two fluids is neglected. Because of the latter, the five-equa-
tion model of Wackers and Koren is not generally applicable. An extension of the Wackers and Koren model with a thermo-
dynamic work term is given in a recent publication of Kreeft and Koren [8]. The source term can be integrated exactly
through the shock wave, leading to an exact closure for the system in the case of discontinuous flow. The solution of this
model needs no explicit algorithm for the interface motion. Hence, the model can be easily implemented in the existing flow
solvers. Other interface-tracking models, such as the volume-of-fluid [6] and level-set [12,17] methods, require explicit
equations for the interface motion.

In the literature, other two-phase flow models also exist for describing the behavior of physical mixtures. These models
use separate pressures, velocities, and densities for each fluid. Moreover, a convection equation for the interface motion is
coupled with the conservation laws of flow models. In the literature such models are known as seven-equation models. One
of such models for solid–gas two-phase flows was initially introduced by Baer and Nunziato [3] and was further investigated
by Abgrall and Saurel [1,16], among others.

In the current five-equation model, the explicit relations for primitive variables are only possible if both fluids satisfy the
ideal-gas equations of state. For example, explicit relations are not possible if stiffened equation of state is used for one of the
two fluids. It can be easily seen that the given model is not closed for this choice of the equation of state. There is another
five-equation two-fluid flow model available in the literature [2,13]. In that model a separate convection equation for the
interface motion is coupled with the flow models. As a results, the last energy equation for one of the two fluids, which
is considered in the current model, disappears. Hence, the resulting two-fluid flow model is a homogeneous conservative
hyperbolic system. In that model, one can use any equation of state and primitive variables can be explicitly determined
from conservative variables.

Despite this limitation, the current model is more interesting to us due to the presence of differential source term in the
energy equation for one of the two fluids. Similar source terms in the seven-equation models not only make the system non-
conservative but also give a hard task to the numerical scheme. Such source terms, called nuzzling terms, appear in the mod-
els due to averaging. The solution of current reduced model with KFVS scheme will help us to understand the handling of
nuzzling terms in the seven-equation models.

In the light of above discussion, the KFVS scheme is extended for solving one and two-dimensional two-fluid flow model
of Wackers and Koren [21]. The proposed numerical scheme is based on the splitting of macroscopic flux functions of the
system of equations of two-fluid flow model. The upwinding bias in numerical flux function can be naturally obtained by
considering a fluid as a collection of particles. The movements of the particles in forward or backward directions automat-
ically split the fluxes of mass, momentum and energy into forward and backward fluxes across the cell interface, i.e.
Fiþ1
2
¼ FþðWiÞ þ F�ðWiþ1Þ;
where Wi represents a vector of mass, momentum and energy densities inside the cell Ii :¼ xi�1
2
; xiþ1

2

h i
. In this scheme, we

start with a cell averaged initial data of conservative variables and get back the cell averaged values of the conservative vari-
ables in the same cell at next time step. In the two-dimensional case, the flux splitting is done in a usual dimensionally split
manner, that is, formula for the fluxes can be used along each coordinate direction. In order to get second-order accuracy,
MUSCAL-type initial reconstruction and Runge–Kutta time stepping method are employed.

Kinetic flux-vector splitting (KFVS) schemes have been widely used for the flow simulations in gas dynamics. Mandal and
Deshpande [10] have used KFVS schemes for the numerical solution of bump in a channel problem on structured meshes.
Numerically, it was found in [10] that the explicit flux function of KFVS scheme, by employing collisionless Boltzmann trans-
port equation, is similar to the flux function of van Leer [20]. The same result was first obtained by [5]. Moreover, Weatherill
et al. [23] have used high order KFVS schemes for the simulation of several two-dimensional problems on structured and
unstructured meshes. Recently, Xu [24] as well as Tang and Xu [18] have constructed an improved BGK-type kinetic flux-
vector splitting scheme which also incorporate particle collisions at the cell interfaces. Furthermore, Tang et al. [19] and
Xu [25] have implemented different KFVS schemes for solving shallow water equations.

For validation, the numerical results of the proposed KFVS scheme are compared with those from the central schemes
[7,14]. These predictor–corrector type methods are applied in two steps. In the predictor step, the mid-point values are pre-
dicted by using a non-oscillatory piecewise-linear reconstructions of cell averages. In the second corrector step, staggered
averaging, together with the predicted mid-values, are used to obtain the updated cell averaged solution. The second order
accuracy in the schemes is achieved by employing MUSCL-type reconstruction procedure. Like the upwind schemes, the non-
oscillatory nature of the scheme is guaranteed by using non-linear min-mod limiters. However, unlike the upwind schemes,
the central schemes do not need the complicated time-consuming (approximate) Riemann solvers. This advantage is more
attractive in the multi-dimensional cases where no exact Riemann solvers exist. Moreover, the central schemes are genu-
inely multi-dimensional because no dimensional splitting is required. The source term in the central schemes is approxi-
mated in the same manner as done by Liotta et al. [9] for relaxation-type hyperbolic conservation laws. A similar idea is
also used in this article to approximate the source term in the KFVS scheme.
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This article is organized as follows. In Section 2, the proposed one-dimensional two-fluid flow model is introduced. After-
wards, the one-dimensional KFVS scheme is derived for the numerical approximation of this model. We also briefly present
the one-dimensional central scheme. In Section 3, the two-fluid flow model and corresponding numerical schemes are ex-
tended to two-space dimensions. In Section 4, numerical test problems are presented. Finally, Section 5 gives conclusions
and remarks.
2. One-dimensional two-fluid flow model

In this section, we give a simplified compressible two-fluid flow model in which friction and heat conduction are ne-
glected. For more details about the model the reader is referred to the report of Wackers and Koren [21,22].

In the derivation of this model, it is assumed that the whole domain of flow is filled with the mixture of two-fluids. In the
macroscopic sense the fluid is a mixture, however on the microscopic level the two fluids retain their own properties. More-
over, both fluids have the same pressure and velocity. Hence, the fluids do not move relative to each other. The fluid elements
interact each other by exerting forces on each other, thus exchanging work.

As mentioned before, a complete two-phase flow model has seven unknown variables containing, two densities, two
velocities, two pressures and one variable describing the relative concentration of fluids. Such models contain seven equa-
tions, see [1,3,16]. However, the same velocity and pressure assumption for both fluids reduces the current model to five
equations with five unknowns. Hence, the state vector w of primitive variables has the form w ¼ ðq1;q2;u; p;YÞ

T . Here, q1

is a density of fluid 1, q2 is a density of fluid 2, u is a bulk velocity, p is a bulk pressure and Y is a measure of the relative
amount of fluid 1. To successfully integrate this model in time, we need five differential equations.

For bulk quantities, such as density q and total energy E, we assume that a is a volume fraction of fluid 1 which is chosen
as the variable Y. This means that a part a of a small volume dV is filled with fluid 1 and a part ð1� aÞ with fluid 2. Using
these conventions, we can define
q ¼ aq1 þ ð1� aÞq2; qE ¼ aq1E1 þ ð1� aÞq2E2 ð1Þ
and the total energy of each fluid as
E1 ¼ e1 þ
1
2

u2; E2 ¼ e2 þ
1
2

u2; ð2Þ
where e1 and e2 denote the internal energies of fluids 1 and 2, respectively.
The one-dimensional two-fluid flow model according to Wackers and Koren [21,22] is given as
Wt þ FðWÞx ¼ S; ð3aÞ
where
W ¼

q
qu

qE

q1a
q1E1a

0
BBBBBB@

1
CCCCCCA
; FðWÞ ¼

qu

qu2 þ p

quEþ pu

q1ua
q1E1uaþ pua

0
BBBBBB@

1
CCCCCCA
; S ¼

0
0
0
0
s

0
BBBBBB@

1
CCCCCCA
: ð3bÞ
Here, W represents the vector of conservative variables, F is a vector of fluxes, and S is a vector of source terms with only last
non-zero term.

2.1. Primitive variables

The system (3a) has five equations with seven unknowns ðq;q1;u; p; e; e1;aÞ. Therefore, further two equations are needed
to close this system. This closure can be obtained by using the equations of state (EOS) required for describing the thermo-
dynamic behavior of two fluids. As mentioned before, it is assumed that both fluid obey the ideal-gas equations of state. With
this assumption, the relations for primitive variables are explicit. If both the fluids satisfy the ideal-gas law, i.e.
p ¼ ðc� 1Þqe ð4Þ
with constant c representing the ratio of specific heats, then the total energies according to (1) and (2) are given as
q1E1a ¼
1

c1 � 1
paþ 1

2
q1au2; ð5Þ

q2E2ð1� aÞ ¼ 1
c2 � 1

pð1� aÞ þ 1
2
ðq� q1aÞu2; ð6Þ

qE ¼ a
c1 � 1

þ 1� a
c2 � 1

� �
pþ 1

2
qu2: ð7Þ
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Here, c1 and c2 are the ratio of specific heats for fluids 1 and 2, respectively. Rearranging Eqs. (5) and (6), we obtain after
using (1)
pa ¼ ðc1 � 1Þ ðq1E1aÞ �
1
2
q1au2

� �
; ð8Þ

pð1� aÞ ¼ ðc2 � 1Þ ðqEÞ � ðq1E1aÞ �
1
2
ðq� ðq1aÞÞu2

� �
: ð9Þ
By adding Eqs. (8) and (9), we get an expression for p, i.e.
p ¼ ðc1 � 1Þ ðq1E1aÞ �
1
2
ðq1aÞu2

� �
þ ðc2 � 1Þ ðqEÞ � ðq1E1aÞ �

1
2
ðq� ðq1aÞÞu2

� �
: ð10Þ
After getting p, Eq. (8) can be used to obtain a as follows:
a ¼
ðc1 � 1Þ ðq1E1aÞ � 1

2 ðq1aÞu2
� �

p
: ð11Þ
Hence, all the primitive variables can be explicitly obtained from the conservative variable. The energy equations are direc-
tional independent, therefore for two-dimensional problem the procedure of calculating primitive variables remains the
same. For two-fluid flows with c1 ¼ c2 ¼ c, the terms q1E1a and q1a disappears from Eq. (10) and gives a reduced expression
for p in the single-fluid
p ¼ ðc� 1Þ qE� 1
2
qu2

� �
: ð12Þ
The source term s in the last equation of (3a) represents the transfer of energy from fluid 2 to fluid 1. We give here the
final expression for the source term. For more details about the derivation of source term the reader is referred to Wackers
and Koren [21,22]. The source term represents the exchange of energy into work. Both fluid elements move with the same
velocity, therefore the velocity of the interface is equal to the velocity u of the fluid elements. Let us define the mass fraction
of fluid 1 as
b ¼ q1a
q

: ð13Þ
Then, the source term on the right-hand side of the energy equation for fluid 1 is given as
s ¼ puax þ ða� bÞupx ¼ uðpaÞx � ubpx: ð14Þ
With the above explicit expression for source term, the system in (3a) along with equations of states is closed.

2.2. One-dimensional kinetic flux-vector splitting scheme

In gas-kinetic theory, the flux is related to the particle motion across a cell interface. The numerical discretization of given
system in (3a) corresponds to the evaluation of local macroscopic flux-vector F(W) through each boundary of the mesh cell.
The particle motion in the x-direction determines the flux function. The remaining quantities, such as densities, pressure and
volume fraction can be considered as passive scalars transporting with the particle velocity. Normally, particles are randomly
distributed around the average velocity.

According to statistical mechanics, the distribution of moving particles along each coordinate direction can be described
by local Maxwellian distribution. The Maxwellian distribution function fM in the normal direction n is given as (e.g. [18])
fMðt;n; mnÞ ¼ q
k
p

� �1
2

exp½�kðun � mnÞ2�; k ¼ q
2p

: ð15Þ
In the one-dimensional case n 2 x and in the two-dimensional case n 2 fx; yg. In other words, we can use the same dis-
tribution for both one- and two-dimensional flows, see, for example [18]. The transport of any flow quantity is due to the
movement of particles. Let us consider the one-dimensional flow. With the distribution function fM in (15), one can split
the particles into two groups. One group is moving to the right with positive velocity ðun > 0Þ and the other group is moving
to the left with negative velocity ðun < 0Þ. Before splitting the fluxes, let us define
hm0in ¼ 1 ¼
Z 1

�1

k
p

� �1
2

e�kðun�mnÞ2 dmn; ð16Þ

hm1in ¼ un ¼
Z 1

�1

k
p

� �1
2

mne�kðun�mnÞ2 dmn: ð17Þ
The above two moments are sufficient to split all the fluxes. In order to simplify the notation, we define
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hm0iþn ¼
Z 1

0

k
p

� �1
2

e�kðun�mnÞ2 dmn ¼
1
2

erfcð�
ffiffiffi
k
p

unÞ; ð18Þ

hm0i�n ¼
Z 0

�1

k
p

� �1
2

e�kðun�mnÞ2 dmn ¼
1
2

erfcð
ffiffiffi
k
p

unÞ ð19Þ
and
hm1iþn ¼
Z 1

0

k
p

� �1
2

mne�kðun�mnÞ2 dmn ¼ unhm0iþn þ
1
2

e�ku2
nffiffiffiffiffiffi

pk
p ; ð20Þ

hm1i�n ¼
Z 0

�1

k
p

� �1
2

mne�kðun�mnÞ2 dmn ¼ unhm0i�n �
1
2

e�ku2
nffiffiffiffiffiffi

pk
p : ð21Þ
In the above equations, the positive sign represents those particles moving in the positive (right) direction and the neg-
ative sign represents the particles moving in the negative (left) direction. Moreover, the complementary error function is
defined as
erfcðzÞ ¼ 2ffiffiffiffi
p
p

Z 1

z
e�t2

dt: ð22Þ
With the help of above flux-splitting technique, we can derive a KFVS scheme for solving (3a).
In order to apply a finite volume scheme, the first step is to subdivide the domain of interest into N sub-domains or mesh

cells. Let us define the cell Ii by interval xi�1
2
; xiþ1

2

h i
for i ¼ 1;2; � � � ;N. Therefore, Dx ¼ xiþ1

2
� xi�1

2
represents the uniform cells

width, the points xi ¼ iDx refer to the cells center and the points xi�1=2 ¼ xi � Dx=2 represent the cells faces. We start with a
cell averaged initial data Wn

i at time step tn and compute the cell average updated solution Wnþ1
i over the same cells at the

next time step tnþ1. This is performed easily by assuming the CFL condition
Dt 6 Dx
1

maxðjv ij þ ciÞ

� �
; ð23Þ
where the speed of sound according to Wackers and Koren [21] is given as ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðac1 þ ð1� aÞc2Þpi=qi

p
. After having the

above definitions, we are ready to split the flux functions in (3a) as
FðWÞ ¼

qu

qu2 þ p
quEþ pu

q1ua
q1E1uaþ pua

0
BBBBBB@

1
CCCCCCA
¼ Fþ þ F�; ð24Þ
where
F� ¼ hm1i�x

q
qu

qEþ 1
2 p

q1a
q1E1aþ 1

2 pa

0
BBBBBB@

1
CCCCCCA
þ hm0i�x

0
p

1
2 pu

0
1
2 pua

0
BBBBBB@

1
CCCCCCA
: ð25Þ
Therefore, the flux-vector at the right interface of the cell Ii is given as
Fiþ1
2
¼ Fþi þ F�iþ1: ð26Þ
Analogously, we can define the left interface flux-vector of the cell Ii. The integration of the (3a) over the cell
Ii ¼ xi�1

2
; xiþ1

2

h i
gives the following semi-discrete kinetic upwind scheme:
dWi

dt
¼ �

Fiþ1
2
� Fi�1

2

Dx
þ 1

Dx

Z x
iþ1

2

x
i�1

2

SðWÞdx; ð27Þ
where the cell averaged value Wi is defined as
Wi :¼WiðtÞ ¼
1
Dx

Z x
iþ1

2

x
i�1

2

Wðt; xÞdx ð28Þ
and Fiþ1
2

is given by (26).



9064 S. Qamar, M. Ahmed / Journal of Computational Physics 228 (2009) 9059–9078
As a next step, we approximate the source term on the right-hand side of (27). In Eq. (3a), the source vector has only one
non-zero component which is given by (14). By using KFVS scheme, this component can be approximated in the following
manner:
Z x

iþ1
2

x
i�1

2

sdx ¼
Z x

iþ1
2

x
i�1

2

ðuðpaÞx � ubpxÞdx ¼ ui ðpaÞiþ1
2
� ðpaÞi�1

2

� �
� ðubÞi piþ1

2
� pi�1

2

� �
¼ siþ1

2
� si�1

2
; ð29Þ
where ui and ðubÞi are the averaged values at the centroid of cell Ii and si�1
2

are the source term fluxes at the interfaces of the
cell Ii. They are defined as
si�1
2
¼ uiðpaÞi�1

2
� ðubÞipi�1

2
; ð30Þ
where at the right interface of cell Ii, we have
ðpaÞiþ1
2
¼ ðpaÞþi þ ðpaÞ

�
iþ1; piþ1

2
¼ pþi þ p�iþ1: ð31Þ
Similarly, one can obtain the left interface values. The splitting procedure is analogous to that presented in (24)–(26) for
cell interface fluxes.

Hence, the semi-discrete scheme (27) can be re-written as
dWi

dt
¼ �

Fiþ1
2
� Fi�1

2

Dx
þ 1

Dx
Siþ1

2
� Si�1

2

� �
: ð32Þ
Only the last component of vectors Si�1
2

are non-zero as given by (30).
The above scheme is first order accurate in space. To achieve high order accuracy, the initial reconstruction strategy must

be applied for interpolating the cell averaged variables Wi. Here, a second order accurate MUSCL-type initial reconstruction
procedure is employed. Starting with a piecewise-constant solution, Wi, one reconstruct a piecewise linear (MUSCL-type)
approximation in x-directions by selecting the slope vector (differences) Wx. The boundary extrapolated values are given as
WL
i ¼Wi �

1
2

Wx
i ; WR

i ¼Wi þ
1
2

Wx
i :
A possible computation of these slopes, is given by family of discrete derivatives parameterized with 1 6 h 6 2, for
example
Wx
i ¼ MM hDWiþ1

2
;
h
2

DWiþ1
2
þ DWi�1

2

� �
; hDWi�1

2

	 

; ð33Þ
where 1 6 h 6 2 is a parameter and D denotes central differencing,
DWiþ1
2
¼Wiþ1 �Wi:
Here MM denotes the min-mod non-linear limiter
MMfx1; x2; . . .g ¼
minifxig if xi > 0 8i;

maxifxig if xi < 0 8i;

0 otherwise:

8><
>: ð34Þ
On the basis of above reconstruction, a semi-discrete high resolution kinetic solver is given as
dWi

dt
¼ �

Fiþ1
2
ðWL

iþ1;W
R
i Þ � Fi�1

2
ðWL

i ;W
R
i�1Þ

Dx
þ

Siþ1
2
ðWL

iþ1;W
R
i Þ � Si�1

2
ðWL

i ;W
R
i�1Þ

Dx
: ð35Þ
To obtain second order accuracy in time, we use a second order TVD Runge–Kutta scheme to solve (35). Denoting the
right-hand side of (35) as LðWÞ, a second order TVD Runge–Kutta scheme update W through the following two stages
(see e.g. [18])
Wð1Þ ¼Wn þ DtLðWnÞ; ð36aÞ

Wnþ1 ¼ 1
2
ðWn þWð1Þ þ DtLðWð1ÞÞÞ; ð36bÞ
where Wn is a solution at previous time step and Wnþ1 is updated solution at next time step. Moreover, Dt represents the
time step.

2.3. One-dimensional central schemes

In order to validate the results of KFVS scheme, we extend the high-resolution non-oscillatory central schemes of Ness-
yahu and Tadmor [14] for the solution of current two-fluid flow model. These predictor–corrector type methods are applied
in two steps. In the predictor step, the mid-point values are predicted by using the non-oscillatory piecewise-linear recon-
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structions of the cell averages. In the second corrector step, staggered averaging, together with the predicted mid-values, are
used to obtain the updated cell averaged solution. The source term in the central schemes is approximated in the same man-
ner as done by Liotta et al. [9] for relaxation-type hyperbolic conservation laws. In summary, the scheme can be presented as
Predictor : Wnþ1
2

i ¼Wn
i �

n
2

FxðWn
i Þ þ

n
2

SxðWn
i Þ; ð37Þ

Corrector : Wnþ1
iþ1

2
¼ 1

2
ðWn

i þWn
iþ1Þ þ

1
8
ðWx

i �Wx
iþ1Þ � n Fnþ1

2
iþ1 � Fnþ1

2
i

h i
þ n Snþ1

2
iþ1 � Snþ1

2
i

h i
; ð38Þ
where n ¼ Dt=Dx. The non-zero component of source vector in (38), according to (14), is given as
s
nþ1

2
iþ1 � s

nþ1
2

i ¼ 1
2

u
nþ1

2
i þ u

nþ1
2

iþ1

� �
ðpaÞnþ

1
2

iþ1 � ðpaÞ
nþ1

2
i

� �
� 1

2
ðubÞnþ

1
2

i þ ðubÞnþ
1
2

iþ1

� �
p

nþ1
2

iþ1 � p
nþ1

2
i

� �
: ð39Þ
Moreover, 1
Dx FxðWiÞ stands for an approximate numerical derivatives of the flux Fðt; x ¼ xiÞ
1
Dx

FxðWiÞ ¼
@

@x
Fðwðt; x ¼ xiÞ þ OðDxÞ: ð40Þ
Analogously, SxðWiÞ can be defined. Like Wx
i in (33), the fluxes FxðWiÞ are computed by applying the min-mod limiter to

each of the component of F. Moreover, SxðWiÞ can be obtained from the already calculated values of Wx
i . This componentwise

approach is one of the main advantages offered by central schemes over corresponding characteristic decompositions re-
quired by upwind schemes.

3. Two-dimensional two-flow flow model

In two-space dimensions the two-fluid flow model of six equations is given as
Wt þ FðWÞx þ GðWÞy ¼ Q þ R; ð41aÞ
where Q and R are source term effects along x- and y-coordinate directions:
W ¼ ðq;qu;qv ;qE;q1a;q1E1aÞT ; ð41bÞ
F ¼ ðqu;qu2 þ p;quv ;quEþ pu;q1ua; ðq1E1aþ paÞuÞT ; ð41cÞ
G ¼ ðqv;quv ;qv2 þ p;qvEþ pv ;q1va; ðq1E1aþ paÞvÞT ; ð41dÞ
Q ¼ ð0;0;0; 0;0; sxÞT ; R ¼ ð0; 0;0; 0;0; syÞT : ð41eÞ
As mentioned before, the energy equation are directional independent, therefore for one- and two-dimensional problems
the procedure of calculating primitive variables is same. For the two-dimensional case, however, we briefly explain them
again. Let juj :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. The total energies of fluids 1 and 2 are given as
q1E1a ¼
1

c1 � 1
paþ 1

2
q1ajuj

2
; ð42Þ

q2E2ð1� aÞ ¼ 1
c2 � 1

pð1� aÞ þ 1
2
ðq� q1aÞjuj

2
: ð43Þ
On adding the above two equations, we obtain the total bulk energy
qE ¼ a
c1 � 1

þ 1� a
c2 � 1

� �
pþ 1

2
qjuj2: ð44Þ
Moreover, the expressions for the pressure and volume fraction are given as
p ¼ ðc1 � 1Þ q1E1a�
1
2
q1ajuj

2
� �

þ ðc2 � 1Þ qE� q1E1a�
1
2
ðq� ðq1aÞÞjuj

2
� �

; ð45Þ

a ¼
ðc1 � 1Þ ðq1E1aÞ � 1

2 ðq1aÞjuj
2

� �
p

: ð46Þ
Analogously, the components of source vectors in (41e) are given as
sx ¼ uððpaÞx � bpxÞ; sy ¼ vððpaÞy � bpyÞ: ð47Þ
3.1. Two-dimensional KFVS scheme

In order to solve (41) numerically, we discretize the given computational domain. Let Nx and Ny be large integers in the
x- and y-directions, respectively. We assume a Cartesian grid with a rectangular domain ½0; xmax� � ½0; ymax� which is covered
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by cells Cij � xi�1
2
; xiþ1

2

h i
� yj�1

2
; yjþ1

2

h i
for 1 6 i 6 Nx and 1 6 j 6 Ny. The representative coordinates of the cell Cij are denoted by

ðxi; yjÞ. In each cell Cij we use the cell averaged values of conservative variables
Wi;jðtÞ ¼Wðt; xi; yjÞ ¼
1

DxDy

Z x
iþ1

2

x
i�1

2

Z y
jþ1

2

y
j�1

2

Wðt; x; yÞdydx: ð48Þ
Integration of Eq. (41a) over control volume xi�1
2
; xiþ1

2

h i
� yi�1

2
; yjþ1

2

h i
gives
dWi;j

dt
¼ � 1

Dx
Fiþ1

2;j
� Fi�1

2;j

h i
� 1

Dy
Gi;jþ1

2
� Gi;j�1

2

h i
þ 1

DxDy

Z x
iþ1

2

x
i�1

2

Z y
jþ1

2

y
j�1

2

½Q ðt; x; yÞ þ Rðt; x; yÞ�dydx; ð49Þ
where
Fiþ1
2;j
¼ Fþi;j þ F�iþ1;j; Gi;jþ1

2
¼ Gþi;j þ G�i;jþ1: ð50Þ
The splitting of above fluxes can be obtained along each coordinate direction in a manner similar to the one-dimensional
case. In this case, the flux-vector F at the cell interfaces perpendicular to the x-axis is split according to the x-component of
the velocity denoted by u and the flux-vector G at the cell interfaces perpendicular to the y-axis is split according to the
y-component of velocity represented by v.

The source term integrals in (49) can be approximated in the same manner as in the one-dimensional case. They are given
as
Z x
jþ1

2

x
j�1

2

Z y
jþ1

2

y
j�1

2

sxðt; x; yÞdydx ¼ Dy ðsxÞiþ1
2;j
� ðsxÞi�1

2;j

h i
; ð51Þ

Z x
jþ1

2

x
j�1

2

Z y
jþ1

2

y
j�1

2

sxðt; x; yÞdydx ¼ Dx ðsyÞi;jþ1
2
� ðsyÞi;j�1

2

h i
; ð52Þ
where
ðsxÞi�1
2;j
¼ ui;jðpaÞiþ1

2;j
� ðubÞi;jpiþ1

2;j
ð53Þ

ðsyÞi;j�1
2
¼ v i;jðpaÞi;j�1

2
� ðvbÞi;jpi;j�1

2
: ð54Þ
Here, ui;j; v i;j; ðubÞi;j and ðvbÞi;j represent cell average values in the cell Cij. Due to Eqs. (51) and (52), the two-dimensional
semi-discrete KFVS scheme (49) can be rewritten as
dWi;j

dt
¼ � 1

Dx
Fiþ1

2;j
� Fi�1

2;j

h i
� 1

Dy
Gi;jþ1

2
� Gi;j�1

2

h i
þ 1

Dx
Q iþ1

2;j
� Q i�1

2;j

h i
þ 1

Dy
Ri;jþ1

2
� Ri;j�1

2

h i
: ð55Þ
Similar to the one-dimensional case, only last components of Q and R are non-zero. This scheme is only first accurate in
space. The second order accuracy of the scheme along each coordinate direction follows the same procedure as explained
in the one-dimensional case. To obtain second order accuracy in time, the second order TVD Runge–Kutta scheme (36b) is
used.
4. Two-dimensional central scheme

The two-dimensional central schemes was proposed by Jaing and Tadmor [7]. The scheme has a two-step predictor–
corrector form. Starting with the cell averages, Wn

i;j, we use the first-order predictor step for the evolution of the mid-point
values, Wnþ1

2
i;j , followed by the second-order corrector step for computation of the new cell averages Wnþ1

i;j . Like the one-
dimensional case, no exact (approximate) Riemann solvers are needed. The non-oscillatory behavior of the scheme is depen-
dent on the reconstructed discrete slopes, Wx; Wy; FxðwÞ, and GyðwÞ. At each time step the grid is staggered to avoid the flux
calculation at the cell interfaces. The scheme is summarized below.

In the predictor step one has to calculate the mid-point values by using
Wnþ1
2

i;j ¼Wn
i;j �

n
2

Fx Wn
i;j

� �
� g

2
Gy Wn

i;j

� �
þ n

2
SxðWn

i;jÞ þ
g
2

SyðWn
i;jÞ: ð56Þ
where n ¼ Dt=Dx and g ¼ Dt=Dy. This step is followed by a corrector step to get the updated values at the next time step by
using
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Wnþ1
iþ1

2;jþ
1
2
¼ 1

4
Wn

i;j þWn
iþ1;j þWn

i;jþ1 þWn
iþ1;jþ1

� �
þ 1

16
Wx

i;j �Wx
iþ1;j

� �
� n

2
Fnþ1

2
iþ1;j � Fnþ1

2
i;j

� �
þ 1

16
Wx

i;jþ1 �Wx
iþ1;jþ1

� �

� n
2

Fnþ1
2

iþ1;jþ1 � Fnþ1
2

i;jþ1

� �
þ 1

16
Wy

i;j �Wy
i;jþ1

� �
� g

2
Gnþ1

2
i;jþ1 � Gnþ1

2
i;j

� �
þ 1

16
Wy

iþ1;j �Wy
iþ1;jþ1

� �

� g
2

Gnþ1
2

iþ1;jþ1 � Gnþ1
2

iþ1;j

� �
þ n

2
Q nþ1

2
iþ1;j � Q nþ1

2
i;j

� �
þ n

2
Q nþ1

2
iþ1;jþ1 � Q nþ1

2
i;jþ1

� �
þ g

2
Rnþ1

2
i;jþ1 � Rnþ1

2
i;j

� �

þ g
2

Rnþ1
2

iþ1;jþ1 � Rnþ1
2

iþ1;j

� �
: ð57Þ
The approximation of the non-zero source differences in the above equation follow the same procedure as given in (39).

5. Numerical test problems

In this section, we present six numerical test problems in order to validate the application of KFVS schemes for the sim-
ulation of two-fluid flow problems. For comparison, we use the results of high resolution central schemes [7,14] presented in
the previous section.

5.1. One-dimensional test problems

Here, we present four one-dimensional shock tube problems. The exact solutions, represented by continuous lines, are
obtained by using the same KFVS scheme on very refined mesh. The dashed lines represent the solution of KFVS scheme,
while doted lines are used for representing the results of central scheme.

Problem 1 (Translating two-fluid interface). The initial data are given as
ðq;u; p;aÞ ¼ ð1000;1;1;1Þ; if x 6 0:25; ð58Þ
ðq;u; p;aÞ ¼ ð1;1;1;0Þ; if x > 0:25: ð59Þ
The ratio of specific heats are given as cL ¼ 1:4 and cR ¼ 1:6. We have chosen 200 mesh cells and the final simulation time
is t ¼ 0:1. This problem is a contact discontinuity of water–air density ratio. The numerical results are shown in Fig. 2. The
same problem was also considered in [8,21]. In this problem, both pressure and velocity are the same. Therefore, the inter-
face is moving to the right with uniform speed and pressure. The numerical results show that KFVS scheme resolves the two-
fluid interface very well as compared to the central scheme. Moreover, both velocity and pressure profiles are oscillation free.

Problem 2. This problem is analogous to the Sod’s problem in the single phase gas dynamics which was also studied in [21].
Here, the density and pressure ratios are larger and the left gas and right gas have different ratios of specific heats. Both gases
are separated by a very thin membrane located at x ¼ 0:5. The gases on both sides of the membrane are at rest. The left side
gas has high density and pressure compared to that on the right side of the membrane. After removing the membrane, the
gases evolution in time take place. The initial data are given as
ðq;u; p;aÞ ¼ ð10;0;10;1Þ; if x 6 0:5 ð60Þ
ðq;u; p;aÞ ¼ ð0:125;0; 0:1; 0Þ; if x > 0:5: ð61Þ
The ratio of specific heats for the left and right side gases are taken as cL ¼ 1:4 and cR ¼ 1:6, respectively. The numerical
results at t ¼ 0:015 are shown in Figs. 3 and 4. The solution contains a left-going rarefaction wave, right-going shock wave
and the right-moving two-fluid interface. In Fig. 3, the solutions of KFVS and central scheme are compared at 300 mesh cells.
The exact solution is obtained from the same KFVS scheme at very refined mesh. Both schemes give correct location of the
discontinuities. Moreover, no pressure oscillations are observed in the solution. Finally, Fig. 4 shows the zoomed plots of
density and pressure. The results show that KFVS scheme resolve the sharp discontinuities better than the central scheme.
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Problem 3. The initial data are given as
1

ρ

0

0.9

1.0

1

p

ðq;u;p;aÞ ¼ ð2:0; 0;1000;1Þ; if x 6 0:5 ð62Þ
ðq;u;p;aÞ ¼ ð1; 0;0:01;0Þ; if x > 0:5: ð63Þ
The ratio of specific heats are given as cL ¼ 1:4 and cR ¼ 1:2. This is a very hard test problem for a numerical scheme. The
solution contain a left moving rarefaction wave, a contact discontinuity, and a right moving shock wave. The right moving
shock hits the interface at x ¼ 0:5. The shock continues to move towards right and a rarefaction wave is created which is
moving towards left. We choose 500 mesh cells and the final simulation time is taken as t ¼ 0:012. The numerical results
are shown in Figs. 5 and 6. The figures show that both schemes give comparable results.

Problem 4 (No-reflection problem). The initial data are given as
ðq;u;p;aÞ ¼ ð3:1748;9:435;100;1Þ; if x 6 0:5; ð64Þ
ðq;u;p;aÞ ¼ ð1; 0;1;0Þ; if x > 0:5: ð65Þ
The ratio of specific heats are given as cL ¼ 1:667 and cR ¼ 1:2. We have chosen 400 mesh cells and the final simulation
time is t ¼ 0:02. This is also a hard test problem for a numerical scheme with large jumps in the pressure at the interface. The
choice of pressure and velocity jump over the shock prevents the creation of a reflection wave. Therefore, a shock wave
moves to the right. The numerical results are shown in Fig. 7. The results of KFVS scheme seems to be superior than the cen-
tral scheme. Moreover, wiggles are visible in the velocity and pressure plots of both schemes, representing small waves that
are reflected to the left. However, unlike real velocity and pressure oscillations, these wiggles reduces in size on refined
mesh. Similar wiggles are also visible in the results presented in [8,21].
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Fig. 2. Results of problem 1 on 200 mesh cells at t ¼ 0:1.
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5.2. Two-dimensional test problems

To test our numerical scheme for two-dimensional problems, two test cases are considered. We study the impact of a
shock in air on a bubble of a lighter and a heavier gas, originally studied by Haas and Sturtevant [4]. The numerical compu-
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Fig. 4. Zoomed results of problem 2 on 300 mesh cells at t ¼ 0:015.
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tations are reported, among others, by Quirk and Karni [15], Marquina and Mulet [11], Kreeft and Koren [8], and Wackers and
Koren [21]. A schematic computational setup is sketched in Fig. 1. We consider a shock tube of length 4.5 and width 0.89. The
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top and bottom walls of the tube are solid reflecting walls, while both ends of the tube are open. Inside the tube a cylinder
of very thin cellular walls is placed. The cylinder is filled with some gas and then a shock wave is generated in the right end
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Fig. 11. One-dimensional plots along y ¼ 0:445 for problem 5 (shock hitting helium bubble).
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Fig. 15. One-dimensional plots along y ¼ 0:445 for problem 6 (shock hitting R22 bubble).
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The wave patterns generated by interaction are strongly depending on the density of the gas inside the bubble. However,
some of the waves can be observed in all most all cases [21,8]. Here, a light helium gas and a heavy R22 gas are considered
inside the cylindrical bubble.



Table 2
Comparison of volictiies for R22 bubble (problem 6).

cs (m/s) cr (m/s) cri (m/s)

Present method 418 243 71
Quirk and Karni 420 254 70
Wackers and Koren 419 241 75
Experiments 415 240 73
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Problem 5 (Helium bubble). In this example, we study the interaction of Ms ¼ 1:22 planar shock, moving in air, with a
cylindrical helium bubble contaminated with 28% of air. The bubble is assumed to be in thermodynamical and mechanical
equilibrium with the surrounding air. The initial data are given as
ðq; u;v ;p; cÞ ¼ ð1:40000; 0:0;0:0;1:0;1:4Þ; pre-shock air;
ðq; u;v ;p; cÞ ¼ ð1:92691;�0:33361;0:0;1:5698;1:4Þ; post-shock air;
ðq; u;v ;p; cÞ ¼ ð0:25463;0:0; 0:0;1:0;1:648Þ; helium:
The position of key features occurred during the time evolution are well explained in [8,11,21]. Therefore, we omit dis-
cussion on these features. The computational domain is discretized into 1000� 300 mesh cells. We display in Fig. 8 the con-
tours of density at times: 0.25, 0.313, 0.356, 0.403. These results are closely matching with the plots given in [4,8,15,21] at
times: 32 ls, 52 ls, 62 ls, 82 ls. The features used to match our contours with those in the literature are the relative posi-
tion of some waves, such as refracted, transmitted or reflected shocks. Moreover, in Figs. 8 and 9 the contours of pressure and
volume fraction show a perfect splitting of the pressure waves and the interface. The shocks and interface are sharp during
the simulation. As observed by Wackers and Koren [21], the last interface is slowly bending inwards in Fig. 10. The phenom-
ena will continue at later times until the bubble split in two vortices. The one-dimensional plots in Fig. 11, along the sym-
metry line y ¼ 0:445, compare the results of KFVS and central schemes. Both schemes give comparable results.

Table 1 displays a quantitative comparison of present method with experiments of [4] and computations of [15,8,21]. In
this table, cis is the incident shock speed, cr is the shock speed in bubble, and cri is the speed of the right side of two-fluid
interface. The incident shock speed is given along the upper boundary of the computational domain, while the other two
speeds are given along the centerline of the bubble ðy ¼ 0:445Þ. The present results were scaled with a sound speed in air of
343 m/s, valid in air at sea level and at 293 K. Our results show a good agreement with available results.

Problem 6 (R22 bubble). Here, the same Ms ¼ 1:22 planar shock moving in air hits a cylindrical R22 bubble which has higher
density and lower ratio of specific heats than air. This results in about two times lower speed of sound. For more details on
the key features the reader is referred to [8,21]. The initial data are given as
ðq; u;v ;p; cÞ ¼ ð1:40000; 0:0;0:0;1:0;1:4Þ; pre-shock air;
ðq; u;v ;p; cÞ ¼ ð1:92691;�0:33361;0:0;1:5698;1:4Þ; post-shock air;
ðq; u;v ;p; cÞ ¼ ð4:41540;0:0; 0:0;1:0;1:249Þ; R22:
The computational domain is discretized into 1000� 300 mesh cells. Due to the lower speed of sound, the shock in the
bubble and the refracted shock lag behind the incoming shock. Moreover, due to the circular shape of the bubble the
refracted shock is curved. For the same reason, the reflected wave and shock wave are also curved. The contours of density
are displayed in Fig. 12 at times: 0.352, 0.606, 0.708, 0.838, 1.084, 1.26. These results are closely matching with the plots
given in [4,8,15,21] at times: 55 ls, 115 ls, 135 ls, 187 ls, 247 ls, 318 ls. Moreover, in Figs. 13 and 14 contour plots of pres-
sure and volume fraction are given. The flow pattern observed in the density contours is split well in a pressure and the inter-
face. Moreover, no wiggles are visible in our results and the pressure is continuous over the interface. Hence, the numerical
results of our scheme reflect all key features as explained in [4,8,21]. The one-dimensional plots in Fig. 15, along the center-
line y ¼ 0:445, compare the results of KFVS and central schemes. It is clear from the plots that both schemes have compa-
rable accuracy.

Finally, Table 2 display different speeds for R22 bubble. Once again, a good agreement can be seen with the already
published results.
6. Conclusions

In this article, a high resolution KFVS scheme is derived for the numerical solution of a compressible two-fluid model of
Wackers and Koren [21]. The proposed numerical scheme is based on the direct splitting of macroscopic flux-vector of the
system of equations. In two space dimensions the scheme is implemented in a usual dimensionally split manner. The second
order accuracy of the scheme is achieved by using MUSCL-type reconstruction and min-mod non-linear limiters. For valida-
tion, the results of the proposed numerical scheme are compared with those from the high resolution central scheme of
Nessyahu and Tadmor [14]. A good agreement in the numerical results of both schemes was observed. However, it was found
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that KFVS schemes gives better resolution of the sharp discontinuities compared to the central schemes. In both schemes, the
non-differential part of the source terms were approximated by the cell averaged values. However, the differential parts of
the source term are approximated similar to the convective fluxes. This work can be considered as a first step towards the
approximation of the full seven-equation model by KFVS schemes. The seven-equation model is non-conservative and non-
strictly hyperbolic. Therefore, this model usually gives hard time to a numerical scheme. The present experience with the
reduced model will help us to solve the full seven-equation models more efficiently and accurately. Work is in progress
in this direction and will be presented soon for publication.
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